Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16905, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803091

RESUMO

The white sturgeon (Acipenser transmontanus) is the largest freshwater fish in North America. Because of the unique life history characteristics of sturgeon, including longevity, late maturation and long spawning intervals, their aquaculture can be a significant investment of resources. As a result of habitat loss and overharvesting, natural populations of white sturgeon are threatened and there is a growing effort to improve conservation aquaculture programs. Germ cell transplantation is an innovative technology previously demonstrated in a variety of fish species to be able to produce a surrogate broodstock. The technique relies upon optimal donor germ cell recovery and transplantation into a recipient fish. In this study, we developed and optimized the harvest of donor cells for germline transplantation and evaluated methods for ovary cryopreservation for the first time in the white sturgeon. We found that harvesting gonads from juveniles between the ages of 1.5 and 2.5-years resulted in reliably high proportions of pre-meiotic cells regardless of sex, a critical feature for using white sturgeon for transplantation studies since the species shows no distinguishing external sex characteristics. From the viable cells, we identified germline cells using immunolabeling with the antibody DDX4, a marker specific to the germline. For in vivo tracking of donor cells during transplantations, gonadal cells were stained with a long half-life non-toxic cell membrane dye, PKH26, and microinjected into the peritoneal cavity of newly hatched white sturgeon larvae. Larvae were reared until 3 months post-transplantation to monitor for colonization and proliferation of PKH26-labeled cells within the recipient larval gonads. Furthermore, viable cell detection, assessment of germline-specificity, and transplantation was determined for cells recovered from cryopreserved ovarian tissue from sexually immature females. Transplantations using cells cryopreserved with media supplemented with dimethyl sulfoxide (DMSO) rather than ethylene glycol (EG) demonstrated the highest number of PKH26-labeled cells distributed along the gonadal ridges of the larval recipient. Determining optimal methods of tissue cryopreservation, and germ cell recovery and transplantation are foundational to the future development of germ cell transplantation as a strategy to improve the aquaculture and conservation of this species. Our study demonstrates that conservation actions, such as surrogate breeding, could be utilized by hatcheries to retain or improve natural gamete production without genetic modification, and provide an encouraging approach to the management of threatened sturgeon species.


Assuntos
Peixes , Células Germinativas , Animais , Feminino , Criopreservação/métodos , Larva , Espécies em Perigo de Extinção , California
2.
Biol Reprod ; 104(4): 924-934, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459759

RESUMO

Abnormally increased angiotensin II activity related to maternal angiotensinogen (AGT) genetic variants, or aberrant receptor activation, is associated with small-for-gestational-age babies and abnormal uterine spiral artery remodeling in humans. Our group studies a murine AGT gene titration transgenic (TG; 3-copies of the AGT gene) model, which has a 20% increase in AGT expression mimicking a common human AGT genetic variant (A[-6]G) associated with intrauterine growth restriction (IUGR) and spiral artery pathology. We hypothesized that aberrant maternal AGT expression impacts pregnancy-induced uterine spiral artery angiogenesis in this mouse model leading to IUGR. We controlled for fetal sex and fetal genotype (e.g., only 2-copy wild-type [WT] progeny from WT and TG dams were included). Uteroplacental samples from WT and TG dams from early (days 6.5 and 8.5), mid (d12.5), and late (d16.5) gestation were studied to assess uterine natural killer (uNK) cell phenotypes, decidual metrial triangle angiogenic factors, placental growth and capillary density, placental transcriptomics, and placental nutrient transport. Spiral artery architecture was evaluated at day 16.5 by contrast-perfused three-dimensional microcomputed tomography (3D microCT). Our results suggest that uteroplacental angiogenesis is significantly reduced in TG dams at day 16.5. Males from TG dams are associated with significantly reduced uteroplacental angiogenesis from early to late gestation compared with their female littermates and WT controls. Angiogenesis was not different between fetal sexes from WT dams. We conclude that male fetal sex compounds the pathologic impact of maternal genotype in this mouse model of growth restriction.


Assuntos
Retardo do Crescimento Fetal/fisiopatologia , Feto/fisiologia , Neovascularização Patológica , Placenta/irrigação sanguínea , Animais , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal/fisiologia , Retardo do Crescimento Fetal/imunologia , Retardo do Crescimento Fetal/patologia , Células Matadoras Naturais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/etiologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/fisiopatologia , Placenta/imunologia , Placenta/patologia , Placentação/fisiologia , Gravidez , Caracteres Sexuais , Diferenciação Sexual/fisiologia , Útero/irrigação sanguínea , Útero/imunologia , Útero/patologia
3.
Aquaculture ; 5112019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32831418

RESUMO

Delta smelt (Hypomesus transpacificus) is a critically endangered species endemic to the San Francisco Bay Delta (SFBD). Important for the conservation of this species is understanding the physiological and ecological impacts contributing to their population decline, and current studies lack information on embryonic development. Changes in patterns of salinity across the SFBD may be a particularly important environmental stressor contributing to the recruitment and survival of the species. Throughout their ontogeny, delta smelt may exhibit unique requirements and tolerances to environmental conditions including salinity. Here, we describe 22 stages of embryonic development of H. transpacificus that characterize early differentiation from the fertilized egg until hatching, allowing the identification of critical morphological features unique to this species. Additionally, we investigated aspects of physiological tolerance to environmental salinity during development. Embryos survived incubation at salinity treatments between 0.4 and 20 ppt, yet had lower hatch success at higher salinities. Prior to hatching, embryos exposed to higher salinities had increased osmolalities and reduced fractions of yolk implying that the elevated external salinity altered the physiology of the embryo and the environment internal to the chorion. Lastly, egg activation and fertilization appear to also be impacted by salinity. Altogether, we suggest that any potential tolerance to salinity during embryogenesis, a common feature in euryhaline teleost species, impacts life cycle transitions into, and out of, embryonic development. Results from this investigation should improve conservation and management practices of this species and further expand our understanding of the intimate relationship between an embryo and its environment.

4.
Proc Natl Acad Sci U S A ; 115(50): 12763-12768, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30446615

RESUMO

The mechanisms that integrate environmental signals into developmental programs remain largely uncharacterized. Nuclear receptors (NRs) are ligand-regulated transcription factors that orchestrate the expression of complex phenotypes. The vitamin D receptor (VDR) is an NR activated by 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a hormone derived from 7-dehydrocholesterol (7-DHC). VDR signaling is best known for regulating calcium homeostasis in mammals, but recent evidence suggests a diversity of uncharacterized roles. In response to incubation temperature, embryos of the annual killifish Austrofundulus limnaeus can develop along two alternative trajectories: active development and diapause. These trajectories diverge early in development, from a biochemical, morphological, and physiological perspective. We manipulated incubation temperature to induce the two trajectories and profiled changes in gene expression using RNA sequencing and weighted gene coexpression network analysis. We report that transcripts involved in 1,25(OH)2D3 synthesis and signaling are expressed in a trajectory-specific manner. Furthermore, exposure of embryos to vitamin D3 analogs and Δ4-dafachronic acid directs continuous development under diapause-inducing conditions. Conversely, blocking synthesis of 1,25(OH)2D3 induces diapause in A. limnaeus and a diapause-like state in zebrafish, suggesting vitamin D signaling is critical for normal vertebrate development. These data support vitamin D signaling as a molecular pathway that can regulate developmental trajectory and metabolic dormancy in a vertebrate. Interestingly, the VDR is homologous to the daf-12 and ecdysone NRs that regulate dormancy in Caenorhabditis elegans and Drosophila We suggest that 7-DHC-derived hormones and their associated NRs represent a conserved pathway for the integration of environmental information into developmental programs associated with life history transitions in animals.


Assuntos
Diapausa/fisiologia , Fundulidae/metabolismo , Transdução de Sinais/fisiologia , Vitamina D/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Colestenos/metabolismo , Desidrocolesteróis/metabolismo , Drosophila/metabolismo , Ecdisona/metabolismo , Receptores de Calcitriol/metabolismo , Temperatura , Vitamina D/análogos & derivados
5.
Sci Rep ; 8(1): 13364, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190591

RESUMO

Embryonic development of Austrofundulus limnaeus can occur along two phenotypic trajectories that are physiologically and biochemically distinct. Phenotype appears to be influenced by maternal provisioning based on the observation that young females produce predominately non-diapausing embryos and older females produce mostly diapausing embryos. Embryonic incubation temperature can override this pattern and alter trajectory. We hypothesized that temperature-induced phenotypic plasticity may be regulated by post-transcriptional modification via noncoding RNAs. As a first step to exploring this possibility, RNA-seq was used to generate transcriptomic profiles of small noncoding RNAs in embryos developing along the two alternative trajectories. We find distinct profiles of mature sequences belonging to the miR-10 family expressed in increasing abundance during development and mature sequences of miR-430 that follow the opposite pattern. Furthermore, miR-430 sequences are enriched in escape trajectory embryos. MiR-430 family members are known to target maternally provisioned mRNAs in zebrafish and may operate similarly in A. limnaeus in the context of normal development, and also by targeting trajectory-specific mRNAs. This expression pattern and function for miR-430 presents a potentially novel model for maternal-embryonic conflict in gene regulation that provides the embryo the ability to override maternal programming in the face of altered environmental conditions.


Assuntos
Diapausa/fisiologia , Embrião não Mamífero/embriologia , Fundulidae/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pequeno RNA não Traduzido/biossíntese , Animais , Fundulidae/genética , Perfilação da Expressão Gênica , Pequeno RNA não Traduzido/genética
6.
BMC Genomics ; 19(1): 155, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463212

RESUMO

BACKGROUND: The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in northern Venezuela, South America, and is an emerging extremophile model for vertebrate diapause, stress tolerance, and evolution. Embryos of A. limnaeus regularly experience extended periods of desiccation and anoxia as a part of their natural history and have unique metabolic and developmental adaptations. Currently, there are limited genomic resources available for gene expression and evolutionary studies that can take advantage of A. limnaeus as a unique model system. RESULTS: We describe the first draft genome sequence of A. limnaeus. The genome was assembled de novo using a merged assembly strategy and was annotated using the NCBI Eukaryotic Annotation Pipeline. We show that the assembled genome has a high degree of completeness in genic regions that is on par with several other teleost genomes. Using RNA-seq and phylogenetic-based approaches, we identify several candidate genes that may be important for embryonic stress tolerance and post-diapause development in A. limnaeus. Several of these genes include heat shock proteins that have unique expression patterns in A. limnaeus embryos and at least one of these may be under positive selection. CONCLUSION: The A. limnaeus genome is the first South American annual killifish genome made publicly available. This genome will be a valuable resource for comparative genomics to determine the genetic and evolutionary mechanisms that support the unique biology of annual killifishes. In a broader context, this genome will be a valuable tool for exploring genome-environment interactions and their impacts on vertebrate physiology and evolution.


Assuntos
Adaptação Biológica/genética , Desenvolvimento Embrionário/genética , Genoma , Peixes Listrados/embriologia , Peixes Listrados/fisiologia , Estresse Fisiológico/genética , Animais , Composição de Bases , Evolução Biológica , Galinhas , Embrião não Mamífero , Regulação da Expressão Gênica , Tamanho do Genoma , Genômica/métodos , Peixes Listrados/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Filogenia , Sequências Repetitivas de Ácido Nucleico , Vertebrados , Peixe-Zebra
7.
Dev Dyn ; 246(11): 779-801, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28481428

RESUMO

BACKGROUND: Austrofundulus limnaeus is an annual killifish from the Maracaibo basin of Venezuela. Annual killifishes are unique among vertebrates in their ability to enter into a state of dormancy at up to three distinct developmental stages termed diapause I, II, and III. These embryos are tolerant of a wide variety of environmental stresses and develop relatively slowly compared with nonannual fishes. RESULTS: These traits make them an excellent model for research on interactions between the genome and the environment during development, and an excellent choice for developmental biology laboratories. Furthermore, A. limnaeus is relatively easy to maintain in a laboratory setting and has a high fecundity, making it an excellent candidate as an emerging model for studies of development, and for defining the limits of developmental buffering in vertebrates. CONCLUSIONS: This study reports for the first time on the detailed development of A. limnaeus and provides a photographic and illustrated atlas of embryos on the two developmental trajectories possible in this species. Developmental Dynamics 246:779-801, 2017. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.


Assuntos
Biologia do Desenvolvimento/métodos , Fundulidae/embriologia , Interação Gene-Ambiente , Animais , Embrião não Mamífero , Fundulidae/crescimento & desenvolvimento , Peixes Listrados/embriologia , Peixes Listrados/crescimento & desenvolvimento , Modelos Animais
8.
Evodevo ; 8: 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439397

RESUMO

BACKGROUND: Genotype and environment can interact during development to produce novel adaptive traits that support life in extreme conditions. The development of the annual killifish Austrofundulus limnaeus is unique among vertebrates because the embryos have distinct cell movements that separate epiboly from axis formation during early development, can enter into a state of metabolic dormancy known as diapause and can survive extreme environmental conditions. The ability to enter into diapause can be maternally programmed, with young females producing embryos that do not enter into diapause. Alternately, embryos can be programmed to "escape" from diapause and develop directly by both maternal factors and embryonic incubation conditions. Thus, maternally packaged gene products are hypothesized to regulate developmental trajectory and perhaps the other unique developmental characters in this species. RESULTS: Using high-throughput RNA sequencing, we generated transcriptomic profiles of mRNAs, long non-coding RNAs and small non-coding RNAs (sncRNAs) in 1-2 cell stage embryos of A. limnaeus. Transcriptomic analyses suggest maternal programming of embryos through alternatively spliced mRNAs and antisense sncRNAs. Comparison of these results to those of comparable studies on zebrafish and other fishes reveals a surprisingly high abundance of transcripts involved in the cellular response to stress and a relatively lower expression of genes required for rapid transition through the cell cycle. CONCLUSIONS: Maternal programming of developmental trajectory is unlikely accomplished by differential expression of diapause-specific genes. Rather, evidence suggests a role for trajectory-specific splice variants of genes expressed in both phenotypes. In addition, based on comparative studies with zebrafish, the A. limnaeus 1-2 cell stage transcriptome is unique in ways that are consistent with their unique life history. These results not only impact our understanding of the genetic mechanisms that regulate entrance into diapause, but also provide insight into the epigenetic regulation of gene expression during development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...